镉的物理性质
镉的物理性质
镉是银白色有光泽的金属,熔点320.9℃,沸点765℃,密度8650 kg/m3;。有韧性和延展性。镉在潮湿空气中缓慢氧化并失去金属光泽,加热时表面形成棕色的氧化物层,若加热至沸点以上,则会产生氧化镉烟雾。高温下镉与卤素反应激烈,形成卤化镉。也可与硫直接化合,生成硫化镉。镉可溶于酸,但不溶于碱。镉的氧化态为+1、+2。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可形成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。
镉的毒性较大,被镉污染的空气和食物对人体危害严重,且在人体内代谢较慢,日本因镉中毒曾出现“痛痛病”。
可用多种方法从含镉的烟尘或镉渣(如煤或炭还原或硫酸浸出法和锌粉置换)中获得金属镉。进一步提纯可用电解精炼和真空蒸馏。镉主要用于钢、铁、铜、黄铜和其他金属的电镀,对碱性物质的防腐蚀能力强。镉可用于制造体积小和电容量大的电池。镉的化合物还大量用于生产颜料和荧光粉。硫化镉、硒化镉、碲化镉用于制造光电池。
锗的物理性质
粉末状呈暗蓝色,结晶状,为银白色脆金属。化合价+2和+4。第一电离能7.899电子伏特,是一种稀有金属,重要的半导体材料。不溶于水。
锗,就其导电的本领而言,优于一般非金属,劣于一般金属,这在物理学上称为“半导体”,对固体物理和固体电子学的发展有重要作用。锗的熔密度5.32克/cm,锗可能性划归稀散金属。锗有着良好的半导体性质,如电子迁移率、空穴迁移率等等。锗的发展仍具有很大的潜力。现代工业生产的锗,主要来自铜、铅、锌冶炼的副产品。
晶体结构:晶胞为面心立方晶胞,每个晶胞含有4个金属原子。
颜色和状态:银白色固体。
据X射线研究证明,锗晶体里的原子排列与金刚石差不多。结构决定性能,所以锗与金刚石一样硬而且脆。
大蒜素的物理性质
1.1大蒜素的物理性质
大蒜素是大蒜中多种含硫化合物的总称,主要为各种烯丙基有机硫复合体。在生产中采用蒸气蒸馏和有机溶剂提取等多种方法从大蒜中提取获得的有效成分是大蒜油。大蒜油呈现淡黄色至棕红色液体,具有浓烈刺激味和大蒜特有的辛辣气味,密度为1.050-1.095g?m-3,折光率为1.055-1.80,能溶于大多数非挥发性油,部分溶于乙醇、乙醚,在无水乙醚、95%乙醇重稳定性很好,不溶于水、甘油和丙二醇。
1.2大蒜素的化学成分及性质
天然大蒜油中有16种含硫化合物,含量较高的是丙基二硫化丙烯(约60%)、硫化二丙烯(23%-39%)、三硫化二丙烯(13%-19%)、化二丙烷(4%-5%)及甲基二硫化丙烯等。人工合成大蒜油主要成分为三硫化二丙烯(50%-80%)、二硫化二丙烯(20%-50%)、少量单硫化二丙烯和四硫化二丙烯,四硫化二丙烯含量很少并易分解。一般这4种成分的总含量超过92%,其余为低沸点的丙酮、乙醇、丙基烯丙基硫醚和二丙基硫醚等杂质。大蒜油对酸化学性质较稳定,常温下在酸性(pH5-7)条件下稳定性较好,一般在非强酸环境。
2大蒜素的作用机制
2.1提高饲料适口性,促进生长
大蒜素具有香味,能消除饲料中的药物及其他物质带来的不良味道,可明显改善饲料的适口性,增加动物的采食量。有报道显示,许多动物尤其是鱼类和禽类都喜欢大蒜素的气味,因此大蒜素能刺激动物的嗅觉和味觉,提高其食欲,增加动物的采食量。
2.2增强机体免疫功能
大蒜素含有多种活性成分,能提高机体细胞的免疫功能。其具有活化有糖脂质组织的细胞膜的功能,可加快细胞的新陈代谢速度,增强活力,增强机体的免疫力。大蒜素还具有增加巨噬细胞、淋巴细胞功能的免疫调节作用。另外,大蒜素具有广谱抑菌杀菌功能,可抑制大肠杆菌、葡萄球菌、痢疾杆菌、伤寒杆菌、霍乱弧菌以及真菌、霉菌的生长,对肺炎球菌、链球菌及肠炎沙门氏菌也有抑制和杀灭作用。这是由于大蒜素中的主要活性物质二硫醚和三硫醚能够透过病菌的细胞膜进入细胞质中,将含巯基的酶氧化为双硫键,从而抑制细胞分裂,破坏病菌和癌细胞的正常代谢。
2.3改善畜产品品质
在饲料中添加大蒜素,可起到杀菌作用,减少抗生素的使用量,解决抗生素的药物残留问题。在饲料中添加大蒜素可改善鸡肉和鸡蛋的风味,降低胆固醇的含量,另外给奶牛饲喂大蒜素,不但可使牛奶的乳脂率上升,奶香味也更加浓郁。
3大蒜素在畜禽生产中的应用
3.1在养禽生产中的应用
夏伦斌等结果表明,在肉仔鸡饲粮中添加大蒜素650mg?kg-1,与对照组相比,大蒜素组全期平均日增重提高7.05%(P<0.05),料肉比降低10.20%(P<0.05),大蒜素组法氏囊、脾脏、胸腹指数均有不同程度的提高,且差异显著(P<0.05)。洪伟等选择62周龄宝万斯褐壳蛋鸡240只,在日粮中的分别添加大蒜素为0、50、100、150mg?kg-1,结果表明,添加大蒜素50、100mg?kg-1可显著降低蛋鸡料蛋比(P<0.05),各大蒜素组均可显著抑制盲肠大肠杆菌增殖(P<0.05)。程忠刚等研究了大蒜素对黄羽肉鸡采食量及生长性能的影响,结果表明,大蒜素组肉鸡日增重提高了6.45%(P<0.05)、料重比降低了2.8%(P>0.05),采食量提高3%(P>0.05)。赵三元等认为,大蒜素通过缓解和改善热应激对免疫器官的损伤、促进热应激肉鸡的生长,提高热应激肉鸡的体液免疫水平,促进其免疫功能的发挥。左瑞华等试验结果表明,在饲粮中使用新鲜大蒜泥可提高皖西白鹅种母鹅产蛋率和种蛋孵化率及种公鹅的射精量和精液品质,降低鹅的死亡淘汰数,且最适宜添加水平为3%。张建强等在肉仔鸡饲粮中添加合成大蒜素,结果发现,大蒜素可以提高肉鸡的日增重、饲料报酬、成活率,增强其抵抗力及夏季抗应激作用,增强对病毒性疾病的抵抗力。
3.2在养猪生产中的应用
陈伟等在大×长二元杂交小公猪日粮中添加鲜大蒜,大蒜组猪宰后肌肉中各保存期的超氧化物歧化酶(SOD)活性都高于对照组,丙二醛(MDA)含量都低于对照组,大蒜组肌肉肉色、大理石纹、系水率、干物质、肌内脂肪和粗蛋白质含量高于对照组,而肌肉的滴水损失、烹饪损失、剪切值则显著低于对照组,说明大蒜素能改善猪宰后肉的抗氧化性,提高肉品质。刘超良等试验表明,大蒜素能提高断奶仔猪低密度脂蛋白(LDL)、总胆固醇(CHO)和葡萄糖(GLU)含量,碱性磷酸酶(ALP)活性有提高的趋势,FT3、IGF-I含量及FT3/FT4显著提高。
3.3在其他动物生产中的应用
金萍等在乳牛日粮中添加大蒜素80mg?kg-1,结果表明,大蒜素对产奶量和乳脂率有显著的改善作用,平均产奶量比对照组提高2.145kg?d-1?头-1,乳脂率提高0.151%。董兵等研究表明,添加大蒜素0.04%对獭兔生产性能有促进效果,同时肠道不同部位的pH有下降趋势,消化道酶活性有升高趋势但差异不显著(P<0.05),说明大蒜素对促进獭兔生长和降低腹泻率有较好效果,同时提高了生长獭兔的饲料消化率。曾虹等在罗非鱼饵料中添加大蒜素50mg?kg-1,发现其能提高罗非鱼的日增重,提高成活率,试验组饲料转化率提高11%,饲料生物学综合评定值为112,比对照组提高12%,并证实大蒜素具有强烈的诱食作用。向枭等在淡水白鳗饵料中添加大蒜素,可提高鱼体的蛋白质含量,降低粗脂肪含量,提高增重率,降低饵料系数,并能有效地改变淡水白绍的鱼肉品质。
4小结
我国是生产大蒜素的主要大国之一,大蒜素资源极为丰富,大蒜素作为从大蒜中提取分离出的一个单体化合物,具有易得、易合成、结构简单、生物活性明显、治疗范围广、不良反应小等优点,随着人类对大蒜素的进一步研究,其将大量应用到绿色饲料生产中,应用前景十分广泛。
汞的物理性质
汞是在常温、常压下唯一以液态存在的金属。熔点-38.87℃,沸点356.6℃,密度13.59克/立方厘米。内聚力很强,在空气中稳定,常温下蒸发出汞蒸气,蒸气有剧毒。天然的汞是汞的七种同位素的混合物。汞微溶于水,在有空气存在时溶解度增大。汞在自然界中普遍存在,一般动物植物中都含有微量的汞,因此我们的食物中,都有微量的汞存在,可以通过排泄、毛发等代谢。
合金:汞容易与大部分普通金属形成合金,这些合金统称汞合金(或汞齐)。能与汞形成合金的金属包括金和银,但不包括铁,所以铁粉一直以来被用于置换汞。其他一些第一行的过渡金属难于形成合金,但不包括锰、铜和锌。其他不易与汞形成合金的元素有铂和其他一些金属。钠汞齐是有机合成中常用的还原剂,也被用于高压钠灯中。
当汞和铝的纯金属接触时,它们易于形成铝汞齐,因为铝汞齐可以破坏防止继续氧化金属铝的氧化层(毛刷实验),所以即使很少量的汞也能严重腐蚀金属铝。出于这个原因,绝大多数情况下,汞不能被带上飞机,因为它很容易与飞机上暴露的铝质部件形成合金而造成危险。
液态:作为金属的汞,在常温下却离奇地以液态存在。相对论收缩效应理论能为这一不寻常的现象提供解释。与金相仿,汞的6s 轨道在收缩的同时并趋于稳定化导致了一种称之为“惰性电子对”效应:汞的6s2壳层在成键过程中呈现惰性。可以看到汞的6s26p激发能远远超过镉和锌的相应激发能。
按照一般周期规律能量间隔应随主量子数增加而减小。所以,由锌到镉能量间隔变小在预料之中,然而由镉到汞该能量间隔反而陡然增加。这里可以再次看到正是相对论收缩效应致使全满的6s2壳层安然稳定,于是汞的6s26p能量间隔骤增。只要得不到所需的激发能,具有惰性6s2壳层的汞原子之间就无法形成强键。基态Hg2仅靠范德华力相互维系,所以金属汞在常温下呈液态。
头发物理性质
头发根部较粗,越往发梢处就越细,所以发径也有所不同,可分一般发、粗发、细发。
头发的形状 可分为直发、波浪卷曲发、天然卷曲发三种。直发的横切面是圆型,波浪卷曲发横切面是椭圆型,天然卷曲发横切面是扁形,头发的粗细与头发属于直发或卷发无关。
头发的吸水性:一般正常头发中含水量约占10%。
头发结构及半径 头发的弹性是指头发能拉到最长程度的能力,仍然能恢复其原状。一根头发约可拉长40-60%,此伸缩率决定于皮质层。头发的张力是指头发拉到极限而不致断裂的力量。一根健康的头发大约可支撑100-150克的重量。
头发各种形状的形成,主要也是头发构成的成分组合的内因作用。毛发的卷曲,一般认为是和它的角化过程有关。凡卷曲的毛发,它在毛囊中往往处于偏心的位置。也就是说,根鞘在它的一侧厚,而在其另一侧薄。靠近薄根鞘的这一面,毛小皮和毛皮质细胞角化开始得早;而靠近厚根鞘这一面的角化开始得晚,角化过程有碍毛发的生长速度。于是,角化早的这一半稍短于另一半,结果造成毛向角化早的这一侧卷曲了。
另外,毛皮质、毛小皮为硬蛋白(含硫),髓质和内根鞘为软蛋白(不含硫),由于角化蛋白性质不同,对角化的过程,即角化发生的早晚也就一定的影响。如果有三个毛囊共同开口于一个毛孔中,或一个毛囊生有两根毛发,这此情况都可能使头发中的角化细胞排列发生变化,形状卷曲状生长。
烫化使头发变得卷曲,则是人为地迫使头发角质蛋白发生扭曲之故。
甲醛的物理性质
碳原子以三个sp²杂化轨道形成三个σ键。其中一个是和氧形成一个σ键。这三个键在同一平面上。碳原子的一个p轨道和氧的一个p轨道彼此重叠起来形成一个π键,与三个σ键所成的平面垂直。键角∠HCH=111.5°,∠HCO=121.8°。键长:碳氢键:120.3pm、碳氧双键:110pm。偶极矩7.56×10⁻³ºC·m。
无色水溶液或气体,有刺激性气味。能与水、乙醇、丙酮等有机溶剂按任意比例混溶。液体在较冷时久贮易混浊,在低温时则形成三聚甲醛沉淀。蒸发时有一部分甲醛逸出,但多数变成三聚甲醛。该品为强还原剂,在微量碱性时还原性更强。在空气中能缓慢氧化成甲酸。
蒸汽相对密度1.081-1.085 g/mL(空气=1),相对密度0.82g/mL(水=1),折射率(nD₂₀)1.3755-1.3775,闪点56℃(气体)、83℃(37%水溶液,闭杯),沸点-19.5℃(气体)、98℃(37%水溶液),熔点-92℃,自燃温度430℃,蒸汽压13.33kPa(-57.3℃),爆炸极限空气中7%-73%,V/V。[1]
辛醇-水分配系数0.35,临界温度137.2~141.2℃,临界压力6.784~6.637MPa,黏度0.242mPa·s(-20℃)。[1]
易溶于水和乙醚,水溶液浓度最高可达55%。能与水、乙醇、丙酮任意混溶。在空气中能逐渐被氧化为甲酸,是强还原剂。其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。在一般商品中,都加入10%~12%的甲醇作为抑制剂,否则会发生聚合。[1]
pH值:2.8~4.0,闪点:60℃
氢氧化钙的物理性质
氢氧化钙,化学式为Ca(OH)2,疏松的白色粉末,在580℃时失水成为氧化钙。氢氧化钙微溶于水,具有较强的碱性;氢氧化钙的溶解度在20℃时为 0.166克/100克水,随着温度升高而减小,100℃时为0.08克/100克水;能吸收空气中二氧化碳生成碳酸钙沉淀。
溶于酸、铵盐、甘油,难溶于水,不溶于醇,对皮肤、织物有腐蚀作用。工业品氢氧化钙称熟石灰或消石灰,其澄清的水溶液称石灰水;与水组成的乳状悬浮液称石灰乳。由于它的价格低,在需要氢氧根离子时都使用它。氢氧化钙可用于制造漂白粉和建筑材料灰泥,或水的软化。
氯化钾物理性质
外观与性状:白色晶体,味极咸,无臭无毒性[2] 。易溶于水、醚、甘油及碱类,微溶于乙醇,但不溶于无水乙醇,有吸湿性,易结块;在水中的溶解度随温度的升高而迅速地增加,与钠盐常起复分解作用而生成新的钾盐。
密度:1.98 at 25 °C(lit.)
熔点:770 °C(lit.)
沸点:1420°C
闪点:1500°C
折射率:n20/D 1.334
水溶解性:340 g/L (20 ºC)
稳定性:稳定。与强氧化剂不相容,强酸。防潮。吸湿性。
储存条件:2-8ºC
亚硝酸盐的物理性质
白色至浅黄色粒状、棒状或粉末。有吸湿性。加热至320℃以上分解。在空气中慢慢氧化为硝酸钠。遇弱酸分解放出棕色三氧化二氮气体。溶于1.5份冷水、0.6份沸水,微溶于乙醇。水溶液呈碱性,pH约9。相对密度2.17。熔点271℃。有氧化性,与有机物接触能燃烧和爆炸,并放出有毒和刺激性的过氧化氮和氧化氮的气体。中等毒,半数致死量(大鼠,经口)180mg/kg[2] 。
苏打粉的物理性质
碳酸氢钠为白色晶体,或不透明单斜晶系细微结晶。比重2.15。无臭、无毒、味咸,可溶于水,微溶于乙醇。25℃时溶于10份水,约18℃时溶于12份水。其水溶液因水解而呈微碱性,常温中性质稳定,受热易分解,在50℃以上逐渐分解,在270℃时完全失去二氧化碳,在干燥空气中无变化,在潮湿空气中缓慢分解。
蜘蛛丝的物理性质
蛛丝的物理性质
粗丝直径0.93~1.4μm,细丝直径0.56μm
蛋白丝(蚕丝、蜘蛛丝)用作医用生物材料的研究
蜘蛛的种类很多,蛛网的网型区别很大。蛛丝的直径有明显差别。蛛网由三种蛛丝组成:框架丝,径向幅丝,螺旋形环向丝。前两种丝是蛛网的骨架丝,直径较粗,强度较高;螺旋丝直径较细,强度稍低,外包粘液,粘液含水量达80%,含有丰富的氨基酸。一般骨架丝的直径在 1μm以上,环向丝直径约0.6μm。有时为增加强度,蜘蛛来回纺丝形成5~10根蛛丝一股。按文献提供的寻常庭院蛛丝实验结果:粗丝直径 0.93~1.4μm,细丝直径0.56μm,断裂时伸长126~146%,拉伸强度为717.5~1490MN/m2, 最终弹性模量2175~3725MN/m2,断裂功93.3~298MJ/cm2。微镜显示:蛛丝中分子排列紧密有序呈晶体状,类似金属的晶体化组织,有些断面分子排列类似橡胶的分子组织结构,这些断面交替出现,这是蛛丝具有高强度和高弹性和高韧性的根本原因。蛛丝的韧性度很高,铅笔芯粗的蛛丝足以支撑一艘万吨级的远洋货轮,是钢的10倍。
蛛丝与蚕丝比较
蚕丝的不足之处是强度不够高和弹性性能有限。蛛丝的强度和弹性比蚕丝高很多,它是目前已知的天然动物纤维丝中强度和弹性最高的一种蛋白纤维。蛛丝的延伸度可以达到130%而不断裂。同时它还具有耐湿性和耐低温性能,蛛丝在零下50°~60°C的低温下仍能保持高弹性和防菌防霉的特性。目前,蛛丝已经是制造轻质防弹衣和航空陀螺仪悬线的最好材料。
药用价值
早在李时珍的《本草纲目》中就记载了蜘蛛具有治疗疮肿、脱肛等疾病的医疗价值。在80年代后,中国动物学会成立了“蛛行学专业委员会”,白求恩医科大学进行了有关蜘蛛医用价值的研究。目前有关蛛丝的医用研究正在迅速开展之中。
酒精与甲醇的区别
甲醇是甲烷的一个氢原子被羟基(一个氢和一个氧组成的原子团,不是氢氧根)替换后的产物。
乙醇是乙烷一个氢原子被羟基替换后的产物,俗称酒精。
分子式不一样。
甲烷:CH4
甲醇:CH3OH
乙醇:CH3CH2OH
他们的分子式不一样,化学性质和物理性质也有区别。
番茄红素的物理性质
由于番茄红素分子中有11个共扼双键及2个非共轭双键,使得番茄红素的稳定性比较差,在一定条件下可发生顺反异构化和氧化降解。番茄红素对氧化反应比较敏感,其溶液经日光照射12小时后,其中的番茄红素基本上损失殆尽。溶液中的Fe3+和Cu2+会对番茄红素的光氧化反应起催化作用,而其它金属离子如K+、Mg2+、Ca2+、Zn2+等则对其影响不大,所以天然番茄红素在提取和应用过程中应尽量避免使用铁制和铜制容器。pH值对番茄红素也有影响,当用乙醇溶解番茄红素,并调制成pH值1~14,结果表明,番茄红素对酸不稳定,对碱则比较稳定,故番茄红素作为色素使用时并不适合于酸性饮料。由此可见,影响番茄红素稳定性的因素有氧、光、金属离子pH等,故番茄红素的提取、贮存、加工及分析都应该在对环境因素进行控制的条件下进行。
呈色能力
番茄红素作为一种天然红色素,如何保持其最强的着色力是至关重要的。番茄果实中的番茄红素有两种存在状态:其中大部分是以细长的、针状的结晶形式存在于有色体中,呈现明亮的红色。当番茄红素的结晶形成时,质体膜消失,色素结晶自由分散在原生质中,在显微镜下观察时,可以看到小粒状的有色体,说明了有色体所显现的颜色;另外一小部分(10%左右)则与蛋白质形成复合体存在于细胞中。番茄红素以不同的形态存在时具有不同的颜色和强度,而且会随着溶剂和介质的不同而呈现出不同的颜色。例如,溶解在石油醚中的番茄红素呈黄色,在二硫化碳中则呈红色。
溶解性
番茄红素是脂溶性色素,可溶于其他脂类和非极性溶剂中,不溶于水,难溶于强极性溶剂如甲醇、乙醇等,可溶于脂肪烃、芳香烃和氯代烃如乙烷、苯、氯仿等有机溶剂。番茄红素在各种溶剂中的溶解度随着温度的上升而增大,然而当样品越纯时,溶解越困难。结晶的番茄红素溶解缓慢,倾向于形成一种超饱和状态,虽然提高温度可加速其溶解,但冷却时可能会出现结晶,这时可利用超声波加速其溶解。纯的番茄红素虽然不溶于水,但当它与某些物质如蛋白质结合形成复合物时,则具有较高的溶解度。
二氧化氯的物理性质
二氧化氯是黄红色有强烈刺激性臭味气体,11℃时凝聚成红棕色液体,-59℃时凝结成橙红色晶体。液体为红褐色,固体为橙红色。相对蒸气密度2.3g/L。遇热水则分解成次氯酸、氯气、氧气,受光也易分解,其溶液于冷暗处相对稳定。
二氧化氯能与许多化学物质发生爆炸性反应。对热、震动、撞击和摩擦相当敏感,极易分解发生爆炸。受热和受光照或遇有机物等能促进氧化作用的物质时,能促进分解并易引起爆炸。若用空气、二氧化碳、氮气等惰性气体稀释时,爆炸性则降低。
二氧化氯属强氧化剂,其有效氯是氯的2.6倍。与很多物质都能发生剧烈反应。腐蚀性很强。
溶解情况:易溶于水,遇水分解,容易和水发生化学反应(水溶液中的亚氯酸和氯酸只占溶质的2%);在水中的溶解度是氯的5-8倍。溶于碱溶液而生成亚氯酸盐和氯酸盐。
鹅蛋的物理性质
鹅蛋(英文:Goose egg),成椭圆形,个体很大,味道有些油,必须用很新鲜的鹅蛋稍加烹煮后食用。鹅蛋每颗约重225~280克,较一般鸡蛋约大四五倍。
表面较光滑,呈白色,其蛋白质含量低于鸡蛋;脂肪含量高于其他蛋类,鹅蛋中还含有多种维生素及矿物质,但质地较粗糙,草腥味较重,食味不及鸡鸭蛋。