养生健康

认知的病因及发病机制

认知的病因及发病机制

认知是大脑皮层复杂高级功能的反映,任何直接或间接导致大脑皮层结构和功能慢性损伤的因素均可通过不同机制引起认知障碍,现将其归纳如下:

慢性脑损伤

1.脑组织调节分子异常

(1)神经递质及其受体异常:大多数神经元之间的信息传递是通过神经递质(neurotransmitter)及其相应的受体完成的。这些神经递质或受体异常改变均可导致不同类型和不同程度的认知异常。

1)多巴胺(dopamine):多巴胺是以酪氨酸为底物,在酪氨酸羟化酶(tyrosine hydroxylase)和多巴脱羧酶(dopamine decarboxylase)的作用下合成的。研究发现:脑中多巴胺含量显著降低时可导致动物智能减退、行为情感异常、言语错乱等高级神经活动障碍。例如,在帕金森病(Parkinson disease,PD)患者黑质多巴胺能神经元减少,酪氨酸羟化酶和多巴脱羧酶活性及纹状体多巴胺递质含量明显卞降。此外,在动物实验中发现多巴胺过多也可导致动物认知功能的异常改变。多巴胺受体有D1和D2受体两大家族,精神分裂症患者与大脑额叶皮层的D1受体功能低下和皮层下结构D2受体功能亢进双重因素有关,因此有人提出用D1激动和D2阻断治疗精神分裂症的新概念。

2)去甲肾上腺素(nonepinephrine):去甲肾上腺素是最早被发现的单胺类神经递质,是多巴胺经β羟化酶作用生成的产物。在脑内,去甲肾上腺素通过α1、α2和β受体发挥调节作用。在突触前,α2受体通过Gi蛋白介导,减少cAMP的生成和cAMP依赖性蛋白激酶的活性,减少蛋白激酶对N-型Ca2+通道的磷酸化,以至Ca2+通道关闭,Ca2+内流减少,从而对去甲肾上腺素的释放起抑制作甩(负反馈调节);α2受体激动还可抑制在警醒状态下的蓝斑神经元的放电增加;在突触后,α1受体激动可引起K+通道开放,K+外流增加,神经元倾向超极化而产生抑制效应。而α1受体激活则使K+通道功能降低,K+外流减少,神经元去极化产生兴奋效应。一般认为,脑中α2受体激动与维持正常的认知功能有关,而α1受体持续、过度激活可致认知异常。在正常警醒状态时,脑细胞含适量去甲肾上腺素,α2受体功能占优势,维持正常的认知功能。在应激状态下产生大量去甲肾肾上腺素,α1受体功能占优势;这可能是个体长期处于应激状态更易出现认知障碍的机制之一。

3)乙酰胆碱(aeetylcholine):乙酰胆碱由乙酰辅酶A和胆碱在胆碱乙酰转移酶的作用下生成。神经细胞合成并释放的乙酰胆碱通过M-受体(M-AchR,毒蕈碱受体)和N-受体(N-AchR,烟碱受体)发挥调节作用,M-AchR是G-蛋白耦联受体,N-AchR是配体门控离子通道受体。脑内的胆碱能神经元被分为两类,即局部环路神经元和投射神经元,自Meynert基底核发出的胆碱能纤维投射至皮层的额叶、顶叶、颞叶和视皮层,此通路与学习记忆功能密切相关。阿尔茨海默病(Alzheimer's disease,AD)患者在早期便有Meynert基底区胆碱能神经元减少,导致皮层胆碱乙酰转移酶活性和乙酰胆碱含量显著降低,是AD患者记忆障碍的重要机制之一;精神分裂症者认知障碍的程度与皮层胆碱乙酰转移酶活性呈负相关;给AD和精神分裂症患者使用胆碱酯酶抑制剂或M受体激动剂可改善其记忆缺损。

4)谷氨酸(glutamate):在脑内,氨基酸类递质含量最高,其中,谷氨酸在人大脑皮层中的含量约为9-11μmol/g,比乙酰胆碱或单胺类递质的含量高103数量级,比神经肽的含量高106数量级。谷氨酸是不能透过血脑屏障的非必需氨基酸,脑内的谷氨酸可分别由谷氨酰胺在谷氨酰胺酶的作用下水解或α-酮戊二酸在其转氨酶的作用下生成。谷氨酸藉N-甲基-D-门冬氨酸(N-methyl-D-aspartate,NMDA)和非NMDA受体起作用。NMDA受体是配体门控的离子通道型受体;非NMDA受体主要指海人藻酸(kainate,KA)和α-氨基-3-羟基-5-甲基-4-异恶唑-丙酸(α-mino-3-hydroxy-5-methy-4-isoxa-zolep-propionate,AMPA)是Na+-K+通透性离子通道型受体。纹状体的谷氨酸神经纤维抑制丘脑向大脑皮层发出感觉冲动,当谷氨酸能神经低下时,这种冲动发出增多,大脑皮质单胺活性增强,引起相应的认知功能异常。由于谷氨酸是哺乳动物脑内最重要的兴奋性神经递质,故当谷氨酸含量异常增高时,可引起“兴奋性毒性”损伤。

(5)神经肽异常:神经肽(neuropeptide)是生物体内的一类生物活性多肽,主要分布于神经组织。在脑内,神经肽与神经递质(neurotransmitter)常常共存于同一神经细胞,但神经肽与经典神经递质有诸多不同:神经肽比神经递质分子量大,在脑组织中含量低;神经肽由无活性的前体蛋白加工而成,而神经递质可在胞体或神经末梢直接合成;神经肽释放后主要经酶解而失活,神经递质则主要通过神经末梢重吸收反复利用;神经肽的调节缓慢而持久,神经递质的调节快速而精确等。神经肽的异常与认知障碍密切相关。有人报道PD患者脑苍白球和黑质中P物质水平下降30%-40%,在黑质中胆囊收缩素(cholecystokinin,CCK)下降30%,在丘脑下部和海马区神经降压肽(neurotensin,NT)含量也下降。血管加压素(vasopressin,VP),血管活性肠肽(vasoac-tire intestinal peptide,VIP)及其受体含量减少与记忆力减退相关,给脑外伤、慢性乙醇中毒及AD病人用VP可改善其记忆力减退。促甲状腺素释放激素(thyrotropin releasing hormone,TRH)是第一个从丘脑下部分离出来的三肽激素,TRH可引起行为改变,如兴奋、精神欣快及情绪暴躁等。TRH既可以作为一种神经激素通过受体调节其他递质起作用,又可以作为一种神经递质直接起作用。腺垂体分泌的促肾上腺激素释放激素(adrenocorticotropic hormone,ACTH)是一39肽激素,其水平改变影响动物的学习记忆、动机行为等。ACTH影响动物学习和行为的关键分子区域是其分子中第4——10位氨基酸残基,该片断能提高大鼠的注意力和记忆力,同时减轻动物的焦虑行为。多发性硬化(multiple sclerosis,MS)患者丘脑下部-垂体一肾上腺皮质(hypothalamus-pynear-adrenocorticode,HPA)轴功能紊乱与其反应迟钝、智能低下、重复语言等认知功能障碍显著相关。根据绝经期女性AD的发病率高于男性,且经绝后接受雌激素替代疗法者的患病率降低,有人提出性激素代谢紊乱也可能参与认知障碍的发病过程。

(6)神经营养因子缺乏:神经元和胶质细胞可合成、分泌大量的神经营养因子,如神经生长因子(neurogrowth factor,NGF)、睫状神经营养因子(ciliary neurotrophic factor,CNTF)、脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)和胶质源性神经营养因子(glia-derived neu-rotrophic factor,GDNF)等。这些神经营养因子对神经元的存活和神经元突起的生长具有重要作用。已发现在多种神经退行性疾病中均有神经营养因子含量的改变,例如,在PD患者黑质NGF、BDNF和GDNF的含量明显降低,离体和在体实验均证明BDNF、GDNF和CNTF对吡啶类衍生物1-甲基4一苯基l,2,3,6一四氢吡啶(MPTP)造成的多巴胺能神经元损伤具有很强的保护作用。

2.脑组织蛋白质异常聚集 脑组织中蛋白质异常聚集可见于一大类脑神经细胞退行性变性疾病中,如AD、PD、亨廷顿病(Huntington disease,HD)、海绵状脑病(Creutzfeldt Jokob disease,CJD)等。蛋白质的异常聚积与基因变异、蛋白质合成后的异常修饰、脑组织慢病毒感染、脑老化和环境毒素中毒等多种因素有关。

(1)基因异常:已发现多种基因异常参与神经细胞的退行性变性。例如,在PD患者有ot-synuclein,parkin和park3基因突变,a-synuclein基因第209位的核苷酸发生了G-A错义突变,使其蛋白质第53位的丙氨酸(Ala)变成了苏氨酸(Thr),变异的蛋白质是PD患者神经细胞胞浆中特征性嗜酸性包涵体,即路易(Lewy)小体的重要成分;已发现有30多种不同parkin基因缺失和点突变与早发性PD有关,改变的parkin蛋白可导致依赖泛素的蛋白降解过程异常,促使parkin蛋白聚集。在AD患者,已发现5个相关基因突变,所编码的蛋白质依次为淀粉样前体蛋白(amy-loid precursor protein,APP)、早老蛋白-1(presenilin-1,PS-1)、PS-2、载脂蛋白E(apolipoprotein E,apoE)和α2-巨球蛋白(α2-macro谷氨酸bumin)。其中,APP、PS基因突变和ApoE基因多态性可导致APP异常降解,产生大量B淀粉样多肽(AB),过量产生的Ap不断在神经细胞间聚集形成老年斑,同时可导致过氧化损伤(损伤生物膜、破坏细胞内钙离子稳态、抑制星形胶质细胞、使一些关键酶失活)、炎症反应和神经细胞死亡。

(2)蛋白质合成后的异常修饰:正常时,蛋白质合成后的不同加工修饰赋予蛋白质不同的结构和功能,是蛋白质结构和功能多样性的基础。蛋白质的异常修饰导致其结构异常、功能降低或丧失。在AD患者,发现细胞骨架蛋白tau被异常磷酸化(phosphorylation)、异常糖基化(glycosylmion,酶促反应)、异常糖化(glycmion,非酶促反应)和异常泛素化(ubiquitilation)修饰,异常修饰的tau蛋白沉积在神经细胞中形成神经原纤维缠结。关于tau蛋白异常糖基化、异常糖化和异常泛素化的机制尚不清楚,目前认为AD患者tau蛋白被异常磷酸化可能与蛋白磷酸酯酶(proteinphosphatase)和蛋白激酶(protein kinase)调节失衡有关。蛋白磷酸酯酶催化蛋白质去磷酸化,AD患者脑中蛋白磷酸酯酶的活性明显降低,使tau蛋白去磷酸化减弱,导致AD患者脑中tau蛋白异常过度磷酸化。蛋白激酶催化蛋白质磷酸化,在AD患者,大脑颞叶皮层多种蛋白激酶的表达量或活性比对照者显著增强。上述磷酸化系统失衡导致tau蛋白异常过度磷酸化,异常修饰的tau在神经细胞内聚集是AD患者神经细胞退化的重要机制。

(3)脑组织慢病毒感染:最常见的由慢病毒感染引起的人类中枢性疾病为CJD,是由一种具传染性的朊蛋白(prion protein,PrP)所致。这种PrP类似于病毒可传播疾病,但与已知病毒不同是,它没有任何可检测到的核酸序列。人类PrP蛋白有两种异构体,分别是存在于正常细胞的PrP(PrPc)和引起朊蛋白病的PrPsc(PrP scrapie)。两种异构体的序列并无差别,但蛋白质的空间构型不同。PrPc是一种细胞内膜结合蛋白,PrPsc不仅存在于细胞内膜,还存在于朊蛋白病患者神经细胞外的淀粉样蛋白纤丝和斑块中;prpsc可促进PrPc转化为PrPsc。在人体内,PrPsc的增殖是通过一分子PrPc与一分子PrPsc结合形成杂二聚体,此二聚体再转化成两分子PrPsc,PrPsc便依此呈指数增殖。有朊蛋白基因突变时,细胞中的PrPc。更易从α-螺旋转变成β-片层,此时更容易与PrPsc结合,导致PrPsc增殖和聚集。

3.慢性脑缺血性损伤

神经元能量储备极少,对缺血、缺氧非常敏感,完全缺血5分钟即可导致神经元死亡。脑缺血造成大脑皮层损伤是引起不同类型认知障碍的常见原因。统计资料表明:脑卒中患者在发病后出现痴呆的危险性较同龄对照组明显增高;有脑卒中史的老年群体的认知水平亦低于无卒中史的同龄老人。脑细胞缺血引起认知异常的机制可能与下述因素有关。

(1)能量耗竭和酸中毒:在缺血、缺氧状态下,细胞的能量代谢转为无氧酵解。无氧酵解生成ATP的效率低,使细胞出现能量耗竭。无氧酵解引起脑组织缺血性乳酸酸中毒,细胞Na+-K+泵功能损伤,K+大量外溢,同时Na+、Cl-及Ca2+大量流人细胞内引起细胞损伤;缺血区乳酸堆积还可引起神经胶质和内皮细胞的水肿和坏死,加重缺血性损害。

(2)细胞内Ca2+超载:脑缺血时,神经细胞膜去极化,引起大量神经递质释放,兴奋性递质(如谷氨酸)的释放激活NMDA受体,使钙通道开放,Ca2+内流增加;如激活非NMDA受体,使Ca2+从内质网释放至细胞浆内;膜去极化本身也启动了电压依赖性钙通道,加重Ca2+内流。神经细胞Ca2+超载可通过下述机制导致细胞死亡:①Ca2+超载时,大量Ca2+沉积于线粒体,干扰氧化磷酸化,使能量产生障碍;②激活细胞内Ca2+依赖性酶类,其中Ca2+依赖的中性蛋白水解酶过度激活可使神经细胞骨架破坏;③激活磷脂酶A和磷脂酶C,使膜磷脂降解;产生大量游离脂肪酸,特别是花生四烯酸,后者在代谢过程中产生血栓素、白三烯,一方面通过生成大量自由基加重细胞损害;另一方面可激活血小板,促进微血栓形成,在缺血区增加梗死范围,加重脑损害;④脑缺血时,脑血管平滑肌,内皮细胞均有明显Ca2+超载,前者可致血管收缩、痉挛,血管阻力增加,延迟再灌流,使缺血半暗带内侧支循环不能形成,从而脑梗死灶扩大;后者可致内皮细胞收缩,内皮间隙扩大,血脑屏障通透性增高,产生血管源性脑水肿。

(3)自由基损伤:在急性脑缺血时,自由基产生和清除平衡状态受到破坏而引起脑损伤。其机制为:①缺血脑细胞能量衰竭,谷氨酸、天门冬氨酸(Asp)增多,此时电压依赖性钙通道和NM.DA受体操纵的钙通道开放,钙离子大量内流,使黄嘌呤脱氢酶转化为黄嘌呤氧化酶,后者催化次黄嘌呤氧化为黄嘌呤并同时产生氧自由基;钙离子大量内流还可激活磷脂酶A,造成血管内皮细胞和脑细胞的膜磷脂降解,花生四烯酸产生增加,后者代谢产生自由基;②缺血区脑细胞线粒体内钙离子增多,三羧酸循环发生障碍,不能为电子传递链的细胞色素氧化酶提供足够的电子将O2还原成H2O,从而生成氧自由基,并漏出线粒体;③急性脑缺血时,NO增多,NO能与氧自由基相互作用形成过氧亚硝基阴离子,后者又分解成羟自由基(OH-)和二氧化氮自由基(NO2-);④梗死灶内游离血红蛋白和铁离子与存在于细胞内的H202发生反应,产生OH-和氧自由基。儿茶酚胺等物质亦可发生氧化反应生成氧自由基。⑤缺血灶由于趋化因子增加,在血管内皮表面吸附大量中性粒细胞和血小板,前者通过细胞色素系统和黄嘌呤氧化酶系统产生O氧自由基和H202,后者通过血小板活化因子引起细胞内Ca2+浓度升高,促进自由基生成。

(4)兴奋性毒性:中枢神经系统中大部分神经递质是氨基酸类,包括谷氨酸、天冬氨酸、γ-氨基丁酸(GABA)和甘氨酸。其中,谷氨酸和天冬氨酸对神经元有极强的兴奋作用,故称为兴奋性氨基酸(excitatory amino acid,EAA),GABA和甘氨酸对神经元行使抑制作用,故称为抑制性氨基酸(inhibitory amino acid,IAA)。“兴奋性毒性(excitatory toxicity)”指脑缺血缺氧造成的能量代谢障碍直接抑制细胞质膜上Na+-K+-ATP酶活性,使胞外K+浓度显著增高,神经元去极化,EAA在突触间隙大量释放,因而过度激活EAA受体,使突触后神经元过度兴奋并最终死亡的病理过程。EAA通过下述两种机制引起“兴奋性毒性”:一是AMPA受体和KA受体过度兴奋引起神经细胞急性渗透性肿胀,可在数小时内发生,以Na+内流,以及Cl-和H2O被动内流为特征;另一种是NMDA受体过度兴奋所介导的神经细胞迟发性损伤,可在数小时至数日发生,以持续的Ca2+内流为特征。

认知障碍的病因及发病机制

(5)炎症细胞因子损害:在脑缺血损害发生后,产生多种多效性细胞因子。在致炎细胞因子占主导地位时,加重脑缺血损害,在抗炎因子占主导时,对脑缺血产生保护作用。如白细胞介素-1β(IL-1β)和肿瘤坏死因子-α(TNF-α)加重脑缺血损害,转化生长因子β1(TGFβ1)对脑缺血有保护作用。此外,在缺血损伤的神经元释放的细胞因子激发下,缺血区吞噬细胞明显增加,吞噬细胞既能释放细胞因子刺激修复过程,又可释放神经毒素杀伤存活神经元。

4.环境、代谢毒素对脑的损害

对绝大多数50岁以后发病的典型散发性神经退行性疾病而言,环境和代谢毒素对脑的损害起主要作用,这些风险因素包括毒品、药物、酒精或重金属中毒等。各种慢性代谢性或中毒性脑病时,如心肺衰竭、慢性肝性脑病、慢性尿毒症性脑病、贫血、慢性电解质紊乱、维生素B:缺乏、叶酸缺乏等,其主要表现为认知异常。

5.脑外伤

脑外伤对学习记忆和智力有不同程度的影响。轻度外伤者可不出现症状;中度外伤者可失去知觉;重度者可导致学习记忆严重障碍,乃至智力丧失。例如,一些“被打得昏头转向”的拳击手,脑反复损伤可出现构语障碍(口吃),心不在焉,好争辩,注意力涣散,近期记忆减退,步态僵硬、痉挛等。

6.脑老化

认知功能一般随年龄增高(约60岁以后)而下降。研究发现,PD患者黑质多巴胺能神经元、酪氨酸羟化酶和多巴脱羧酶活力、纹状体多巴胺递质自30岁以后随年龄增长而逐年减少或降低。老年人脑巾血液供应减少,台成和分解代谢以及对毒素的清除能力均降低,这些都是造成老化脑神经细胞死亡,认知功能降低的主要因素。

慢性全身性疾病

心血管系统病变,如高血压、糖尿病、慢性阻塞性肺疾病等,可通过减少脑血液供应等机制,继发性降低大脑功能而引起认知障碍。处于亚临床阶段的心、脑血管疾病的高危人群,其认知测验的得分明显低于无任何亚临床特征的同龄老人,说明这些病变可能已经造成腑部的缺血、缺氧及脑功能损伤。此外,整体功能水平降低,如老年人听力下降使其与外界环境的接触以及对外界刺激的加工减少,也可降低老年人对外界环境的感知和认同;躯体功能,特别是操作性活动减少也可导致认知功能减退。有人发现,冠脉搭桥手术后的患者常出现短期记忆丧失和注意力下降,还有人认为,任何一种大的外科手术都可能导致大脑皮层功能的上述改变。

精神、心理异常

轻松、愉快、多彩的生活环境可促进实验动物大脑皮层的增长,使脑重量增加。相反,不良的心理、社会因素,如负性生活事件、处境困难、惊恐、抑郁等均可成为认知障碍的诱囡。近年来,利用电子计算机x线断层扫描(CT)与磁共振(MRI)对精神活动失调患者的脑成像研究发现,社会心理功能减退患者的有关脑区的皮层萎缩。用正电子发射扫描(PET)和单光子发射计算机断层扫描(SPECT)结合同位索示踪对脑局部脑血流(rCBF)和18氟一脱氧葡萄糖(FDG)或11碳-脱氧葡萄糖(CDG)代谢的研究证实,精神失常患者的有关脑区局部血流低灌注,葡萄糖利用率降低。用电子显微镜观察并经图像分析发现,精神分裂症患者的有关脑区神经细胞数目减少,细胞体积变小。

人文因素的影响

在诸多的人文因素中,受教育程度是报告最多、结果最恒定的影响认知的因素,认知测验的得分与受教育年限呈负相关。社会地位低下,经济生活状况较差与认知功能减退和痴呆的发生有一定关系。但在多因素分析中控制了年龄、性别、卒中史等较重要的因素后,社会经济凼素的影响一般不再显著。此外,女性认知功能损害的发生率高于男性,对各年龄组进行多因素分析的结果表明,这种差异与女性的受教育程度较低和慢性病患病率较高有关。

认知是大脑皮层复杂高级功能的反映,任何直接或间接导致大脑皮层结构和功能慢性损伤的因素均可通过不同机制引起认知障碍,现将其归纳如下:

慢性脑损伤

1.脑组织调节分子异常

(1)神经递质及其受体异常:大多数神经元之间的信息传递是通过神经递质(neurotransmitter)及其相应的受体完成的。这些神经递质或受体异常改变均可导致不同类型和不同程度的认知异常。

1)多巴胺(dopamine):多巴胺是以酪氨酸为底物,在酪氨酸羟化酶(tyrosine hydroxylase)和多巴脱羧酶(dopamine decarboxylase)的作用下合成的。研究发现:脑中多巴胺含量显著降低时可导致动物智能减退、行为情感异常、言语错乱等高级神经活动障碍。例如,在帕金森病(Parkinson disease,PD)患者黑质多巴胺能神经元减少,酪氨酸羟化酶和多巴脱羧酶活性及纹状体多巴胺递质含量明显卞降。此外,在动物实验中发现多巴胺过多也可导致动物认知功能的异常改变。多巴胺受体有D1和D2受体两大家族,精神分裂症患者与大脑额叶皮层的D1受体功能低下和皮层下结构D2受体功能亢进双重因素有关,因此有人提出用D1激动和D2阻断治疗精神分裂症的新概念。

2)去甲肾上腺素(nonepinephrine):去甲肾上腺素是最早被发现的单胺类神经递质,是多巴胺经β羟化酶作用生成的产物。在脑内,去甲肾上腺素通过α1、α2和β受体发挥调节作用。在突触前,α2受体通过Gi蛋白介导,减少cAMP的生成和cAMP依赖性蛋白激酶的活性,减少蛋白激酶对N-型Ca2+通道的磷酸化,以至Ca2+通道关闭,Ca2+内流减少,从而对去甲肾上腺素的释放起抑制作甩(负反馈调节);α2受体激动还可抑制在警醒状态下的蓝斑神经元的放电增加;在突触后,α1受体激动可引起K+通道开放,K+外流增加,神经元倾向超极化而产生抑制效应。而α1受体激活则使K+通道功能降低,K+外流减少,神经元去极化产生兴奋效应。一般认为,脑中α2受体激动与维持正常的认知功能有关,而α1受体持续、过度激活可致认知异常。在正常警醒状态时,脑细胞含适量去甲肾上腺素,α2受体功能占优势,维持正常的认知功能。在应激状态下产生大量去甲肾肾上腺素,α1受体功能占优势;这可能是个体长期处于应激状态更易出现认知障碍的机制之一。

3)乙酰胆碱(aeetylcholine):乙酰胆碱由乙酰辅酶A和胆碱在胆碱乙酰转移酶的作用下生成。神经细胞合成并释放的乙酰胆碱通过M-受体(M-AchR,毒蕈碱受体)和N-受体(N-AchR,烟碱受体)发挥调节作用,M-AchR是G-蛋白耦联受体,N-AchR是配体门控离子通道受体。脑内的胆碱能神经元被分为两类,即局部环路神经元和投射神经元,自Meynert基底核发出的胆碱能纤维投射至皮层的额叶、顶叶、颞叶和视皮层,此通路与学习记忆功能密切相关。阿尔茨海默病(Alzheimer's disease,AD)患者在早期便有Meynert基底区胆碱能神经元减少,导致皮层胆碱乙酰转移酶活性和乙酰胆碱含量显著降低,是AD患者记忆障碍的重要机制之一;精神分裂症者认知障碍的程度与皮层胆碱乙酰转移酶活性呈负相关;给AD和精神分裂症患者使用胆碱酯酶抑制剂或M受体激动剂可改善其记忆缺损。

4)谷氨酸(glutamate):在脑内,氨基酸类递质含量最高,其中,谷氨酸在人大脑皮层中的含量约为9-11μmol/g,比乙酰胆碱或单胺类递质的含量高103数量级,比神经肽的含量高106数量级。谷氨酸是不能透过血脑屏障的非必需氨基酸,脑内的谷氨酸可分别由谷氨酰胺在谷氨酰胺酶的作用下水解或α-酮戊二酸在其转氨酶的作用下生成。谷氨酸藉N-甲基-D-门冬氨酸(N-methyl-D-aspartate,NMDA)和非NMDA受体起作用。NMDA受体是配体门控的离子通道型受体;非NMDA受体主要指海人藻酸(kainate,KA)和α-氨基-3-羟基-5-甲基-4-异恶唑-丙酸(α-mino-3-hydroxy-5-methy-4-isoxa-zolep-propionate,AMPA)是Na+-K+通透性离子通道型受体。纹状体的谷氨酸神经纤维抑制丘脑向大脑皮层发出感觉冲动,当谷氨酸能神经低下时,这种冲动发出增多,大脑皮质单胺活性增强,引起相应的认知功能异常。由于谷氨酸是哺乳动物脑内最重要的兴奋性神经递质,故当谷氨酸含量异常增高时,可引起“兴奋性毒性”损伤。

(5)神经肽异常:神经肽(neuropeptide)是生物体内的一类生物活性多肽,主要分布于神经组织。在脑内,神经肽与神经递质(neurotransmitter)常常共存于同一神经细胞,但神经肽与经典神经递质有诸多不同:神经肽比神经递质分子量大,在脑组织中含量低;神经肽由无活性的前体蛋白加工而成,而神经递质可在胞体或神经末梢直接合成;神经肽释放后主要经酶解而失活,神经递质则主要通过神经末梢重吸收反复利用;神经肽的调节缓慢而持久,神经递质的调节快速而精确等。神经肽的异常与认知障碍密切相关。有人报道PD患者脑苍白球和黑质中P物质水平下降30%-40%,在黑质中胆囊收缩素(cholecystokinin,CCK)下降30%,在丘脑下部和海马区神经降压肽(neurotensin,NT)含量也下降。血管加压素(vasopressin,VP),血管活性肠肽(vasoac-tire intestinal peptide,VIP)及其受体含量减少与记忆力减退相关,给脑外伤、慢性乙醇中毒及AD病人用VP可改善其记忆力减退。促甲状腺素释放激素(thyrotropin releasing hormone,TRH)是第一个从丘脑下部分离出来的三肽激素,TRH可引起行为改变,如兴奋、精神欣快及情绪暴躁等。TRH既可以作为一种神经激素通过受体调节其他递质起作用,又可以作为一种神经递质直接起作用。腺垂体分泌的促肾上腺激素释放激素(adrenocorticotropic hormone,ACTH)是一39肽激素,其水平改变影响动物的学习记忆、动机行为等。ACTH影响动物学习和行为的关键分子区域是其分子中第4——10位氨基酸残基,该片断能提高大鼠的注意力和记忆力,同时减轻动物的焦虑行为。多发性硬化(multiple sclerosis,MS)患者丘脑下部-垂体一肾上腺皮质(hypothalamus-pynear-adrenocorticode,HPA)轴功能紊乱与其反应迟钝、智能低下、重复语言等认知功能障碍显著相关。根据绝经期女性AD的发病率高于男性,且经绝后接受雌激素替代疗法者的患病率降低,有人提出性激素代谢紊乱也可能参与认知障碍的发病过程。

(6)神经营养因子缺乏:神经元和胶质细胞可合成、分泌大量的神经营养因子,如神经生长因子(neurogrowth factor,NGF)、睫状神经营养因子(ciliary neurotrophic factor,CNTF)、脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)和胶质源性神经营养因子(glia-derived neu-rotrophic factor,GDNF)等。这些神经营养因子对神经元的存活和神经元突起的生长具有重要作用。已发现在多种神经退行性疾病中均有神经营养因子含量的改变,例如,在PD患者黑质NGF、BDNF和GDNF的含量明显降低,离体和在体实验均证明BDNF、GDNF和CNTF对吡啶类衍生物1-甲基4一苯基l,2,3,6一四氢吡啶(MPTP)造成的多巴胺能神经元损伤具有很强的保护作用。

2.脑组织蛋白质异常聚集 脑组织中蛋白质异常聚集可见于一大类脑神经细胞退行性变性疾病中,如AD、PD、亨廷顿病(Huntington disease,HD)、海绵状脑病(Creutzfeldt Jokob disease,CJD)等。蛋白质的异常聚积与基因变异、蛋白质合成后的异常修饰、脑组织慢病毒感染、脑老化和环境毒素中毒等多种因素有关。

(1)基因异常:已发现多种基因异常参与神经细胞的退行性变性。例如,在PD患者有ot-synuclein,parkin和park3基因突变,a-synuclein基因第209位的核苷酸发生了G-A错义突变,使其蛋白质第53位的丙氨酸(Ala)变成了苏氨酸(Thr),变异的蛋白质是PD患者神经细胞胞浆中特征性嗜酸性包涵体,即路易(Lewy)小体的重要成分;已发现有30多种不同parkin基因缺失和点突变与早发性PD有关,改变的parkin蛋白可导致依赖泛素的蛋白降解过程异常,促使parkin蛋白聚集。在AD患者,已发现5个相关基因突变,所编码的蛋白质依次为淀粉样前体蛋白(amy-loid precursor protein,APP)、早老蛋白-1(presenilin-1,PS-1)、PS-2、载脂蛋白E(apolipoprotein E,apoE)和α2-巨球蛋白(α2-macro谷氨酸bumin)。其中,APP、PS基因突变和ApoE基因多态性可导致APP异常降解,产生大量B淀粉样多肽(AB),过量产生的Ap不断在神经细胞间聚集形成老年斑,同时可导致过氧化损伤(损伤生物膜、破坏细胞内钙离子稳态、抑制星形胶质细胞、使一些关键酶失活)、炎症反应和神经细胞死亡。

(2)蛋白质合成后的异常修饰:正常时,蛋白质合成后的不同加工修饰赋予蛋白质不同的结构和功能,是蛋白质结构和功能多样性的基础。蛋白质的异常修饰导致其结构异常、功能降低或丧失。在AD患者,发现细胞骨架蛋白tau被异常磷酸化(phosphorylation)、异常糖基化(glycosylmion,酶促反应)、异常糖化(glycmion,非酶促反应)和异常泛素化(ubiquitilation)修饰,异常修饰的tau蛋白沉积在神经细胞中形成神经原纤维缠结。关于tau蛋白异常糖基化、异常糖化和异常泛素化的机制尚不清楚,目前认为AD患者tau蛋白被异常磷酸化可能与蛋白磷酸酯酶(proteinphosphatase)和蛋白激酶(protein kinase)调节失衡有关。蛋白磷酸酯酶催化蛋白质去磷酸化,AD患者脑中蛋白磷酸酯酶的活性明显降低,使tau蛋白去磷酸化减弱,导致AD患者脑中tau蛋白异常过度磷酸化。蛋白激酶催化蛋白质磷酸化,在AD患者,大脑颞叶皮层多种蛋白激酶的表达量或活性比对照者显著增强。上述磷酸化系统失衡导致tau蛋白异常过度磷酸化,异常修饰的tau在神经细胞内聚集是AD患者神经细胞退化的重要机制。

(3)脑组织慢病毒感染:最常见的由慢病毒感染引起的人类中枢性疾病为CJD,是由一种具传染性的朊蛋白(prion protein,PrP)所致。这种PrP类似于病毒可传播疾病,但与已知病毒不同是,它没有任何可检测到的核酸序列。人类PrP蛋白有两种异构体,分别是存在于正常细胞的PrP(PrPc)和引起朊蛋白病的PrPsc(PrP scrapie)。两种异构体的序列并无差别,但蛋白质的空间构型不同。PrPc是一种细胞内膜结合蛋白,PrPsc不仅存在于细胞内膜,还存在于朊蛋白病患者神经细胞外的淀粉样蛋白纤丝和斑块中;prpsc可促进PrPc转化为PrPsc。在人体内,PrPsc的增殖是通过一分子PrPc与一分子PrPsc结合形成杂二聚体,此二聚体再转化成两分子PrPsc,PrPsc便依此呈指数增殖。有朊蛋白基因突变时,细胞中的PrPc。更易从α-螺旋转变成β-片层,此时更容易与PrPsc结合,导致PrPsc增殖和聚集。

3.慢性脑缺血性损伤

神经元能量储备极少,对缺血、缺氧非常敏感,完全缺血5分钟即可导致神经元死亡。脑缺血造成大脑皮层损伤是引起不同类型认知障碍的常见原因。统计资料表明:脑卒中患者在发病后出现痴呆的危险性较同龄对照组明显增高;有脑卒中史的老年群体的认知水平亦低于无卒中史的同龄老人。脑细胞缺血引起认知异常的机制可能与下述因素有关。

(1)能量耗竭和酸中毒:在缺血、缺氧状态下,细胞的能量代谢转为无氧酵解。无氧酵解生成ATP的效率低,使细胞出现能量耗竭。无氧酵解引起脑组织缺血性乳酸酸中毒,细胞Na+-K+泵功能损伤,K+大量外溢,同时Na+、Cl-及Ca2+大量流人细胞内引起细胞损伤;缺血区乳酸堆积还可引起神经胶质和内皮细胞的水肿和坏死,加重缺血性损害。

(2)细胞内Ca2+超载:脑缺血时,神经细胞膜去极化,引起大量神经递质释放,兴奋性递质(如谷氨酸)的释放激活NMDA受体,使钙通道开放,Ca2+内流增加;如激活非NMDA受体,使Ca2+从内质网释放至细胞浆内;膜去极化本身也启动了电压依赖性钙通道,加重Ca2+内流。神经细胞Ca2+超载可通过下述机制导致细胞死亡:①Ca2+超载时,大量Ca2+沉积于线粒体,干扰氧化磷酸化,使能量产生障碍;②激活细胞内Ca2+依赖性酶类,其中Ca2+依赖的中性蛋白水解酶过度激活可使神经细胞骨架破坏;③激活磷脂酶A和磷脂酶C,使膜磷脂降解;产生大量游离脂肪酸,特别是花生四烯酸,后者在代谢过程中产生血栓素、白三烯,一方面通过生成大量自由基加重细胞损害;另一方面可激活血小板,促进微血栓形成,在缺血区增加梗死范围,加重脑损害;④脑缺血时,脑血管平滑肌,内皮细胞均有明显Ca2+超载,前者可致血管收缩、痉挛,血管阻力增加,延迟再灌流,使缺血半暗带内侧支循环不能形成,从而脑梗死灶扩大;后者可致内皮细胞收缩,内皮间隙扩大,血脑屏障通透性增高,产生血管源性脑水肿。

(3)自由基损伤:在急性脑缺血时,自由基产生和清除平衡状态受到破坏而引起脑损伤。其机制为:①缺血脑细胞能量衰竭,谷氨酸、天门冬氨酸(Asp)增多,此时电压依赖性钙通道和NM.DA受体操纵的钙通道开放,钙离子大量内流,使黄嘌呤脱氢酶转化为黄嘌呤氧化酶,后者催化次黄嘌呤氧化为黄嘌呤并同时产生氧自由基;钙离子大量内流还可激活磷脂酶A,造成血管内皮细胞和脑细胞的膜磷脂降解,花生四烯酸产生增加,后者代谢产生自由基;②缺血区脑细胞线粒体内钙离子增多,三羧酸循环发生障碍,不能为电子传递链的细胞色素氧化酶提供足够的电子将O2还原成H2O,从而生成氧自由基,并漏出线粒体;③急性脑缺血时,NO增多,NO能与氧自由基相互作用形成过氧亚硝基阴离子,后者又分解成羟自由基(OH-)和二氧化氮自由基(NO2-);④梗死灶内游离血红蛋白和铁离子与存在于细胞内的H202发生反应,产生OH-和氧自由基。儿茶酚胺等物质亦可发生氧化反应生成氧自由基。⑤缺血灶由于趋化因子增加,在血管内皮表面吸附大量中性粒细胞和血小板,前者通过细胞色素系统和黄嘌呤氧化酶系统产生O氧自由基和H202,后者通过血小板活化因子引起细胞内Ca2+浓度升高,促进自由基生成。

(4)兴奋性毒性:中枢神经系统中大部分神经递质是氨基酸类,包括谷氨酸、天冬氨酸、γ-氨基丁酸(GABA)和甘氨酸。其中,谷氨酸和天冬氨酸对神经元有极强的兴奋作用,故称为兴奋性氨基酸(excitatory amino acid,EAA),GABA和甘氨酸对神经元行使抑制作用,故称为抑制性氨基酸(inhibitory amino acid,IAA)。“兴奋性毒性(excitatory toxicity)”指脑缺血缺氧造成的能量代谢障碍直接抑制细胞质膜上Na+-K+-ATP酶活性,使胞外K+浓度显著增高,神经元去极化,EAA在突触间隙大量释放,因而过度激活EAA受体,使突触后神经元过度兴奋并最终死亡的病理过程。EAA通过下述两种机制引起“兴奋性毒性”:一是AMPA受体和KA受体过度兴奋引起神经细胞急性渗透性肿胀,可在数小时内发生,以Na+内流,以及Cl-和H2O被动内流为特征;另一种是NMDA受体过度兴奋所介导的神经细胞迟发性损伤,可在数小时至数日发生,以持续的Ca2+内流为特征。

认知障碍的病因及发病机制

(5)炎症细胞因子损害:在脑缺血损害发生后,产生多种多效性细胞因子。在致炎细胞因子占主导地位时,加重脑缺血损害,在抗炎因子占主导时,对脑缺血产生保护作用。如白细胞介素-1β(IL-1β)和肿瘤坏死因子-α(TNF-α)加重脑缺血损害,转化生长因子β1(TGFβ1)对脑缺血有保护作用。此外,在缺血损伤的神经元释放的细胞因子激发下,缺血区吞噬细胞明显增加,吞噬细胞既能释放细胞因子刺激修复过程,又可释放神经毒素杀伤存活神经元。

4.环境、代谢毒素对脑的损害

对绝大多数50岁以后发病的典型散发性神经退行性疾病而言,环境和代谢毒素对脑的损害起主要作用,这些风险因素包括毒品、药物、酒精或重金属中毒等。各种慢性代谢性或中毒性脑病时,如心肺衰竭、慢性肝性脑病、慢性尿毒症性脑病、贫血、慢性电解质紊乱、维生素B:缺乏、叶酸缺乏等,其主要表现为认知异常。

5.脑外伤

脑外伤对学习记忆和智力有不同程度的影响。轻度外伤者可不出现症状;中度外伤者可失去知觉;重度者可导致学习记忆严重障碍,乃至智力丧失。例如,一些“被打得昏头转向”的拳击手,脑反复损伤可出现构语障碍(口吃),心不在焉,好争辩,注意力涣散,近期记忆减退,步态僵硬、痉挛等。

6.脑老化

认知功能一般随年龄增高(约60岁以后)而下降。研究发现,PD患者黑质多巴胺能神经元、酪氨酸羟化酶和多巴脱羧酶活力、纹状体多巴胺递质自30岁以后随年龄增长而逐年减少或降低。老年人脑巾血液供应减少,台成和分解代谢以及对毒素的清除能力均降低,这些都是造成老化脑神经细胞死亡,认知功能降低的主要因素。

慢性全身性疾病

心血管系统病变,如高血压、糖尿病、慢性阻塞性肺疾病等,可通过减少脑血液供应等机制,继发性降低大脑功能而引起认知障碍。处于亚临床阶段的心、脑血管疾病的高危人群,其认知测验的得分明显低于无任何亚临床特征的同龄老人,说明这些病变可能已经造成腑部的缺血、缺氧及脑功能损伤。此外,整体功能水平降低,如老年人听力下降使其与外界环境的接触以及对外界刺激的加工减少,也可降低老年人对外界环境的感知和认同;躯体功能,特别是操作性活动减少也可导致认知功能减退。有人发现,冠脉搭桥手术后的患者常出现短期记忆丧失和注意力下降,还有人认为,任何一种大的外科手术都可能导致大脑皮层功能的上述改变。

精神、心理异常

轻松、愉快、多彩的生活环境可促进实验动物大脑皮层的增长,使脑重量增加。相反,不良的心理、社会因素,如负性生活事件、处境困难、惊恐、抑郁等均可成为认知障碍的诱囡。近年来,利用电子计算机x线断层扫描(CT)与磁共振(MRI)对精神活动失调患者的脑成像研究发现,社会心理功能减退患者的有关脑区的皮层萎缩。用正电子发射扫描(PET)和单光子发射计算机断层扫描(SPECT)结合同位索示踪对脑局部脑血流(rCBF)和18氟一脱氧葡萄糖(FDG)或11碳-脱氧葡萄糖(CDG)代谢的研究证实,精神失常患者的有关脑区局部血流低灌注,葡萄糖利用率降低。用电子显微镜观察并经图像分析发现,精神分裂症患者的有关脑区神经细胞数目减少,细胞体积变小。

人文因素的影响

在诸多的人文因素中,受教育程度是报告最多、结果最恒定的影响认知的因素,认知测验的得分与受教育年限呈负相关。社会地位低下,经济生活状况较差与认知功能减退和痴呆的发生有一定关系。但在多因素分析中控制了年龄、性别、卒中史等较重要的因素后,社会经济凼素的影响一般不再显著。此外,女性认知功能损害的发生率高于男性,对各年龄组进行多因素分析的结果表明,这种差异与女性的受教育程度较低和慢性病患病率较高有关。

胰腺炎病因及发病机制

胰腺炎主要是由于胰腺组织受胰蛋白酶的自身消化。正常情况下,胰液内的胰蛋白酶原无活性,待其流入十二指肠,受到胆汁和肠液中的肠激酶的激活作用后变为有活性的胰蛋白酶后,才具有消化蛋白质的作用。胰腺炎时因某些因素激活了胰蛋白酶,后者又激活了其它酶反应,对胰腺产生了自身消化作用,促进了其坏死溶解。已查出在胰腺腺泡的酶原颗粒中含有高浓度的弹性硬蛋白酶,在胰腺分泌液中含有无活性的该酶前体,后者可被胰蛋白酶激活而能溶解弹性组织,从而破坏血管壁及胰腺导管。另外,胰蛋白酶对由脂蛋白构成的细胞膜及线粒体膜并无作用,而胰液中的磷脂酶A被脱氧胆酸激活后,作用于细胞膜和线粒体膜的甘油磷脂,使之分解变为脱脂酸卵磷脂,亦称溶血卵磷脂,后者对细胞膜有强烈的溶解作用,可溶解、破坏胰腺细胞膜和线粒体膜的脂蛋白结构,导致细胞坏死。

急性胰腺炎时胰酶被激活的原因概括如下

1,十二指肠壶腹部的阻塞引起胆汁返流,总胆管和胰管共同开口于十二指肠壶腹部,返流的胆汁可进入胰管,将无活性的胰蛋白酶原激活成胰蛋白酶,再诱发前述一系列酶反应引起胰腺的出血、坏死。引起十二指肠壶腹部阻塞的原因有胆石、蛔虫、暴饮暴食引起的壶腹括约肌痉挛及十二指肠乳头水肿等。后二种原因也可使十二指肠液进入胰内。

2,胰液分泌亢进使胰管内压升高暴饮暴食,酒精的刺激使胃酸及十二指肠促胰液素secretin分泌增多,进而促进胰液分泌增多,造成胰管内压增高。重者可导致胰腺小导管及腺泡破裂,放出内生性活素,激活胰蛋白酶原等,从而引起胰腺组织的出血坏死。

肠炎发病机制

环境因素

近几十年来,IBD(UC和CD)的发病率持续增高,这一现象首先出现在社会经济高度发达的北美、北欧,继而是西欧、南欧,最近才是日本、南美。这一现象反映了环境因素微妙但却重要的变化,如饮食、吸烟或暴露于其他尚不明确的因素。

遗传因素

IBD发病的另一个重要现象是IBD患者一级亲属发病率显着高于普通人群,而患者的配偶发病率不增加。瑞典一项大规模的研究发现,CD发病率单卵双胞显着高于双卵双胞。已有大量关于IBD相关基因的报道。早期研究主要集中在HLA等位基因以及细胞因子基因多态性上,但报道的结果不一,主要可能与不同种族、人群遗传背景有关。近年对基因组进行定位克隆,在IBD家族的大样本研究发现,IBD的易感点位于第3、7、12、16号染色体上,有关研究尚在深入进行中。认为,IBD不仅是多基因病,而且也是遗传异质性疾病(不同人由不同基因引起),患者在一定的环境因素作用下由于遗传易感而发病。

感染因素

微生物在IBD发病中的作用一直受到重视,但至今尚未找到某一特异微生物病原与IBD有恒定关系。有研究认为副结核分枝杆菌及麻疹病毒与 CD有关,但证据尚缺乏说服力。近年关于微生物致病性的另一种观点正日益受到重视,这一观点认为IBD(特别是CD)是针对自身正常肠道菌丛的异常免疫反应引起的。有两方面的证据支持这一观点。一方面来自IBD的动物模型,用转基因或敲除基因方法造成免疫缺陷的IBD动物模型,在肠道无菌环境下不会发生肠道炎症,但如重新恢复肠道正常菌丛状态,则出现肠道炎症。

附件炎的发病机制病因

很多女性朋友都会有这样的遭遇,感觉自己什么地方也没出问题,但一到医院检查,附件炎,迷惑之中难免还是会有些怀疑结果。其实,人体内常常会发生炎症,只是地方不同。可没有医学知识的女性还是比较困惑。所以这里阐明一下附件炎的病因。

卵巢与输卵管均为左右对称,分布位于小腹腰带以下,附件炎发病时,患者呈现两侧或一侧持续或间息性牵拉痛坠闷感。初发时,只略有隐痛或不适,来潮时症状加重,故常为人们所忽视,并视为生理周期的正常反应。此病未婚已婚女性均可发生,一般由内外阴逆行感染所造成,临床上常与盆腔炎相伴发生。附件炎可使输卵管闭锁,导致不孕,诱发炎症与其它并发症,而附件炎真正的灾难性后果是使卵巢无法发挥正常的生理功能。卵巢是女性区别于男性最重要的性器官之一。它不仅承担着产生卵子与精于结合,创造延续人类历史重任,而且还承担着女性特有的雌激素,孕激素与雄性激素的分泌,支撑着女性的第二性征;使乳房亢盈、挺拔、子宫充满活力:使皮肤百嫩细腻,线条柔润魅力四射。附件炎不但可使女性不孕不育,第二性征弱化消失,尚可直接造成内分泌失调,致使皮肤早衰,偷走女人的美丽。

附件炎虽然是指输卵管和卵巢的炎症。但输卵管、卵巢炎常常合并有宫旁结缔组织炎、盆腔腹膜炎,且在诊断时也不易区分,这样,盆腔腹膜炎、宫旁结缔组织炎,就也被划入附件炎范围了。在盆腔器官炎症中,以输卵管炎最常见,由于解剖部位相互邻近的关系,往往输卵管炎、卵巢炎、盆腔腹膜炎同时并存且相互影响。

(1)分娩或流产后由于抵抗力下降,病原体经生殖道上行感染并扩散到输卵管、卵巢,继而整个盆腔,引起炎症。

(2)在宫内节育器广泛应用的同时,患者不注意个人卫生或手术操作不严格而引发。

(3)未经严格消毒而进行的宫腔操作,如吸宫术、子宫输卵管碘油造影、子宫颈管治疗,以及消毒不严格的产科手术感染等。

(4)不注意经期卫生,月经期性交或不洁性交等。

(5)身体其他部位有感染未经及时治疗时,病原菌可经血行传播而引起输卵管卵巢炎,多见于结核性疾病。

(6)盆腔或输卵管邻近器官发生炎症如阑尾炎时,可通过直接蔓延引起输卵管卵巢炎、盆腔腹膜炎,炎症一般发生在邻近的一侧输卵管及卵巢。

(7)性传播疾病如淋病,感染后淋病双球菌可以沿粘膜向上蔓延,引起输卵管、卵巢炎症。

未婚女性换上附件炎的原因

一般而言,未婚女子如果没有性生活的话,是不易得附件炎的,但也不是说绝对不会患上附件炎。因为致病菌还可以通过非性途径进入内生殖器,黄河性病防治研究所的专家指出常见侵入途径有以下几种:

1、性病致病菌的非性入侵

性病十分流行,可经非性途径进入生殖道。最常见的非性途径有住旅社、浸在浴缸内洗澡、坐便盆、穿浴衣等。

2、血行传播

主要见于结核病,结核菌可经血液侵犯生殖器,使患者出现生殖器结核病。

3、淋巴管传播

肠炎患者,特别是较重的结肠炎,致病菌可以从结肠经淋巴管扩散到生殖器。

4、直接侵犯

最常见的是阑尾炎,阑尾炎患者由于种种原因延迟就医,结果细菌会突破阑尾浆膜,随脓液流入右侧附件,甚至累计左侧附件。

未婚女子一旦患上附件炎,应及时到正规的医院治疗,以免病情严重化,变成慢性附件炎,阻塞输卵管,导致宫外孕或不孕症,从而造成终身憾事。

要知道,其实女性的生殖器官是很脆弱的,很容易受到这样那样的感染,不能健康长久。其实遇见这些事情不要惊慌,只要配合医生治疗,再加上自我身心调节,改善生活习惯和方式。不仅能很快走出疾病阴霾,更能提高免疫力,减少疾病发生。

性变态的病因和发病机制

1.人格基础

儿童少年早期就有特殊的性兴趣、性偏好或性偏见可能成为性变态的发病基础。病前就有内向、怕羞、少动、孤僻、不善交往、性格较温顺及男性具有女性气质等,都与性变态的发病有一定的关系。

2.遗传

40%性变态者的家族中存在病恋或心理异常者。

3.社会心理因素

精神分析学派强调早期影晌,认为是儿时的遭遇在潜意识中种下的种子;行为学派则强凋是后天环境影响,认为是后天学习而来的。南京医科大学脑科专家提出,人类性欲和性心理发育要全息重演种系性(发育)进化的历程,任何因素导致发育障碍都可能是日后性变态的基础。重要生活事件如事业上困难与失败,家庭双亲的不良对待,恋爱受挫,夫妻性生活不和谐;淫秽、色情物品的作用和影响,年幼期性变态的临床特征包括受到家庭、环境刺激,性兴奋经验的作用与影响等都与性变态的发病有一定的关系。

躁狂症的发病病因和发病机制

生物学因素

①神经生化,精神药理学研究和神经递质代谢研究证实,患者存在中枢神经递质代谢异常和相应受体功能改变。5-羟色胺(5-HT)功能活动缺乏可能是双相障碍的基础,是易患双相障碍的素质标志;去甲肾上腺素(NE)功能活动降低可能与抑郁发作有关,去甲肾上腺素功能活动增强可能与躁狂发作有关;多巴胺(DA) 功能活动异常;γ-氨基丁酸(GABA)是中枢神经系统抑制性神经递质,可能存在功能活动异常,因作用于此神经递质的抗癫痫药可以作为心境稳定剂,有效治疗躁狂症和双相障碍。②第二信使平衡失调,第二信使是细胞外信息与细胞内效应之间不可缺少的中介物;③神经内分泌功能失调,主要是下丘脑―垂体-肾上腺皮质轴和下丘脑―垂体―甲状腺轴的功能失调。

遗传学因素

家系调查发现,双相I型障碍先证者的一级亲属中双相障碍的发病率,较正常人的一级亲属中发病率高数倍,血缘关系越近,患病率越高。分子遗传学方面,不少学者探讨了与双相障碍可能有关的标记基因,但尚无确切可重复验证的结果,双相障碍的易感基因尚需进一步研究。目前,有关双相障碍遗传方式倾向为多基因遗传。

心理社会因素

不良的生活事件和环境应激事件可以诱发情感障碍的发作,如失业、失恋、家庭关系不好、长时期高度紧张的生活状态等。遗传因素在情感障碍发病中可能导致一种易感素质,而具有这种易感素质的人在一定的环境因素促发下发病。

溶血性黄疸的病因发病机制和特征

1)病因和发生机制:凡能引起红细胞大量破坏而产生溶血现象的疾病,都能发生溶血性黄疸:①先天性溶血性贫血;②获得性溶血性贫血.

红细胞大量破坏时,生成过量的非结合胆红素,远超过肝细胞摄取,结合和排泄的限度,同时溶血性贫血引起的缺氧,红细胞破坏释出的毒性物质,均可削弱肝细胞的胆红素代谢功能,使非结合胆红素潴留于血中而发生黄疸.

2)溶血性黄疸的特征:①巩膜多见轻度黄染,在急性发作时有发热,腰背酸痛,皮肤粘膜往往明显苍白;②皮肤无瘙痒;③有脾大;④有骨髓增生旺盛的表现;⑤血清总胆红素增高,一般不超过85μmol/L,主要为非综合胆红素增高;⑥尿中尿胆原增加而无胆红素,急性发作时有血红蛋白尿,呈酱油色,慢性溶血时尿内含铁血黄素增加,24小时粪中尿胆原排出量增加;⑦在遗传性球形细胞增多时,红细胞脆性增加,地中海贫血时脆性降低.

白癜风的发病病因和发病机制

白癜风是一种获得性、自发性皮肤病,临床上表现为获得性白斑,色素减退斑或斑片,其发病机制的研究主要集中自身免疫、自身细胞毒和神经假说。依据受累程度和脱色区域分布对其进行分类。泛发性白癜风最为常见,双侧对称脱色,好发于面部(特别是腔口部)、颈、躯于、四肢伸侧、腋下或黏膜表面。颜面肢端性白癜风,表现为手指远端及面部腔口部脱色,后者为局限性。局灶性白癜风脱色斑片呈局限性、非皮节分布。节段性白癜风发生在皮节,对称性分布,由于发病早、病程顽固与自身免疫病的联系下降,因而被认为是白癜风的一个特殊类型。泛发性白癜风全身皮肤色素脱失。白癜风的发病可能与遗传、免疫、黑素细胞自毁、神经化学因子以及某些微量元素如铜、锌等有关。白癜风有时也可因口服药如氯喹、氯苯酚嗪引起。白癜风样皮损可发生koebner现象,即在创伤部位(如擦伤、外科疤痕、放射治疗或进展期牛皮癣、湿疹、接触性皮炎及严重的日晒伤等处)发生类似的损害。白癜风对人的心理影响也是很明显的,因为一个人的外表对人的性格、品性和人格影响很大。白癜风主要影响人的性格。感情压抑、窘迫或自卑,偶尔接触陌生人时缺乏自信、有被歧视感都会对病人造成显着的伤害。

肺气肿的病因和发病机制

一发病原因

肺气肿的发病机制至今尚未完全阐明,一般认为是多种因素协同作用形成的。

一、引起慢支的各种因素如感染、吸烟、大气污染、职业性粉尘和有害气体的长期吸入、过敏等,均可引起阻塞性肺气肿。

二、弹性蛋白酶及其抑制因子失衡学说。

α1-抗胰蛋白酶缺乏和肺气肿关系的研究提示,肺气肿是由肺内的蛋白酶和抗蛋白酶含量的不平衡,使肺泡间隔破坏,大量肺气肿的动物模型支持这一假说。人类肺气肿的研究证明,弹性多肽的浓度在肺气肿的病人中增加。吸烟可增加弹性蛋白溶解活性,抑制肺的成纤维细胞的浸润,造成对弹性蛋白酶的组织敏感性增加,抑制了抗弹性蛋白酶的活性。这些发现支持吸烟使弹性蛋白酶和抗弹性蛋白酶的平衡被打破,从而造成肺的微细结构的破坏,引起肺气肿。

二发病机制

1.肺气肿的病理改变 肺气肿是由各种原因引起的肺泡和肺泡管异常扩大和肺泡壁破坏,使肺内残气量增多,根据其受累肺泡的范围分为小叶中心型肺气肿常位于肺尖部、全小叶型肺气肿常在肺基底部和远端小叶型肺气肿。全小叶型和小叶中心型肺气肿与吸烟有关,这两种类型的肺气肿常合并存在,均匀分布在肺脏的上叶或下叶。当肺气肿严重时,气管梗阻亦有所发展。反复发作的细支气管的炎症造成气管梗阻、肺间质破坏,引起气管的机械支持力丧失,使其塌陷和气管梗阻,从而引起肺内气体增多,形成气腔。

2.肺气肿病理生理 呼吸肌肉的功能在肺气肿病人有明显的变化,其他呼吸辅助肌肉、肋间肌也不能在正常的长度-张力曲线上工作。膈肌的隆起程度减低,使其在收缩时不能形成足够的胸内负压,在膈肌变平时,收缩时向下牵拉下部胸廓,挤压肺脏,对呼吸的效果产生反向的影响,使膈肌收缩时胸廓变大引起吸气的功能转换为呼气。肺泡壁结构的破坏使肺毛细血管床减少,肺微循环的破坏使肺血管阻力增高,肺气肿病人的肺血流阻力与肺的CO弥散能力呈反向相关,所以,在肺气肿病人出现肺动脉高压之前,一定有气体交换功能的严重损害。

以上的病因个发病机制如果您都看完的话,希望您可以牢记在心里。对一种疾病的认识就对自己的身体多家一份保障,谁不想呢。如果你感觉你的身体有哪里不适的话,应该及时到正规的医院进行检查和治疗,切勿耽误了病情。

肺心病病因和发病机制

各种慢性肺疾病所致的肺循环阻力增加暨肺动脉高压是引起慢性肺源性心脏病的关键环节。

①慢性阻塞性肺疾病时,小气道的阻塞导致通气障碍,以及肺感染、肺间质纤维化及肺气肿均能破坏肺的血气屏障结构,减少气体交换面积,导致换气功能障碍。使肺泡气氧分压降低(缺氧),二氧化碳分压增高,引起肺小动脉痉挛(缺氧可干扰血管平滑肌细胞膜钾、钠离子交换和促使肥大细胞释放血管活性物质,引起肺小动脉痉挛)。

②缺氧还能导致肺血管构型的改变,使肺小动脉中膜肥厚、无肌性细动脉的肌化,从而导致肺循环阻力增加和肺动脉高压。

③限制性肺疾病,如胸廓病变、脊柱弯曲、胸膜纤维化及胸廓成形术后等,不仅可引起限制性通气障碍,还可压迫较大的肺血管和造成肺血管的扭曲,导致肺循环阻力增加暨肺动脉高压。

④肺血管疾病,如反复的肺动脉栓塞和原发性肺血管疾病也可减少肺血管床面积而导致肺循环阻力增加和肺动脉高压。对增高的肺循环阻力,肺小动脉发生管壁平滑肌肌化增强,右心室也发生心肌细胞的适应性肥大,但右心室心肌细胞的适应能力是有限度的,当右心室负荷增高2~3.5倍时,极易出现心腔扩张。因此,慢性肺源性心脏病可视为肺小动脉和右心室对慢性肺疾病引起的肺循环阻力和压力增高而发生的适应性反应,属于一种特殊的心脏病。

相关推荐

感冒的发病机制

鼻病毒主要是感冒患者的鼻咽部分泌物污染后造成的接触性传播(手-眼、手-鼻),也存在经飞沫传播途径,后者在急性鼻咽炎远不及流感重要。鼻病毒感染后病毒复制在48h达到高峰浓度,传播期则持续达3周。个体易感性与营养健康状况和上呼吸道异常(如扁桃腺肿大)及吸烟等因素有关。寒冷本身并不会引起感冒。寒冷季节感冒多见的部分原因与病毒类型有关,也可能与寒冷导致室内家庭成员或人群聚集增加与拥挤有关。感染症状受宿主生理状况的影响,过劳、抑郁、鼻咽过敏性疾病和月经期等均可加重症状。以鼻病毒为例,鼻腔或眼部是其进入机体的门户,鼻

艾滋病发病机制

(一)病毒感染过程 1.原发感染 HIV需借助于易感细胞表面的受体进入细胞,包括第一受体和第二受体。HIV进入人体后,在24—48小时内到达局部淋巴结,约5天左右在外周血中可以检测到病毒成份。继而产生病毒血症,导致急性感染。 2.HIV在人体细胞内的感染过程 吸附及穿入:HIV-1感染人体后,选择性的吸附于靶细胞的CD4受体上,在辅助受体的帮助下进入宿主细胞。经环化及整合、转录及翻译、装配、成熟及出芽,形成成熟的病毒颗粒。 3.HIV感染后的三种临床转归 由于机体的免疫系统不能完全清除病毒,形成慢性感染,

脑瘤的发病机制

颅内肿瘤形成的病因病机:传统中医认为,脑瘤的形成是由于内伤七情,使脏腑功能失调,加之外邪侵入,寒热相搏,痰浊内停,长期聚于身体某一部位而成。专家们博采众家之长,经过潜心研究,将脑瘤的发病原因概括为内外两种,即内为素质因素或易感因素,外为诱发因素或为助长因素,但一不会发病。 脑肿瘤属祖国医学的“头痛”、“头风”等范畴,究其发病原因,主要为肾虚不充,髓海失养,肝肾同源,肾虚肝亦虚,肝风内动,邪毒上扰清窍,痰蒙浊闭,阻塞脑洛,血气凝滞,“头为诸阳之会”总司人之神明,最不容邪气相犯,若感受六淫邪毒,直中脑窍或邪气

切口疝发病机制

1.病理生理 腹壁切口疝疝环一般较大,发生嵌顿和绞窄的机会甚少。早期疝囊多不完整,随着时间的延长,腹膜可爬行而形成完整的疝囊,疝内容物一般为肠管和(或)大网膜,常因粘连而形成难复性疝。也有腹膜愈合而筋膜裂开,腹膜膨出形成疝囊者。 切口疝无自愈可能,对全身状况影响较大。如不及时治疗多数病人随着病程的增长而逐渐增大切口周围肌肉、腱膜、筋膜等组织则日趋薄弱,疝环增大,腹腔内脏器愈来愈多地突出在腹腔外的疝囊中,逐渐发展为巨大的切口疝,使得真正的腹腔容积渐渐减少,疝囊成为容纳部分腹腔脏器的“第二腹腔”或“腹外腹”。

青光眼发病机制

1.钝伤外力作用于角膜,使前房内的压力急剧升高,进而传递压力至晶状体-虹膜隔和虹膜角膜角,致晶状体-虹膜隔后移,和赤道部的巩膜扩张,引起虹膜大动脉环、虹膜小动脉环、睫状体动脉分支或脉络膜回返小动脉或睫状体和上巩膜静脉丛之间的静脉破裂,导致前房积血。 2.前房积血的转归:前房积血最主要的排出路是经房水排出道。在房水排出系统功能完整的情况下,血细胞可迅速经小梁系统排出,临床上曾见到全前房积血的病例,在24h内完全消失,呈现惊人的速度。最早有人用带有放射性磷标记的红细胞注入前房,发现含磷标记的红细胞以整个细胞的

脑震荡的病因发病机制

一、脑震荡的病因 脑震荡是一种轻型脑损伤,伤后脑组织一般无器质性的病理改变。意识障碍为一过性,其发病机制不明。一般认为与脑于网状结构的受损有关。外伤时脑脊液在脑室内的震动、睡内压力的改变、脑干本身的机械性牵拉扭转以及血管功能紊乱等都可能导致短暂的脑功能障碍。 过去一直认为脑震荡仅仅是中枢神经系统的暂时性功能障碍,并无可见的器质性损害,在大体解剖和病理组织学上均未发现病变,所表现的一过性脑功能抑制,可能与暴力所引起的脑细胞分子紊乱,神经传导阻滞,脑血液循环调节障碍,中间神经元受损以及中线脑室内脑脊液冲击波等

贫血的分类

发展速度 急性贫血、慢性贫血。 红细胞形态 主要参考平均红细胞体积(MCV) 大细胞性贫血:MCV>100fL。 正细胞性贫血:MCV在80fL~100fL。 小细胞性贫血:MCV

干槽症发病机制

1.感染:感染学说是基于干槽症实际上表现为骨创感染。感染的作用可以使直接的;也可以是间接的,即引起血凝块的纤维蛋白溶解。基于感染学说,全身或局部使用抗菌药物可预防及治疗干槽症,针对厌氧菌的药物预防干槽症也取得了满意的效果。 2.创伤:Krogh在1937年提出创伤在干槽症病因中期重要作用。许多研究认为创伤为干槽症的主要发病因素之一。创伤引起发病机制有不同的解释:创伤使骨组织易发生继发感染;创伤使骨壁的血管栓塞,导致牙槽窝内血凝块形成障碍;创伤产生的组胺影响伤口愈合;创伤骨组织使组织活化剂释放,导致纤维蛋

多少度的近视算高度近视

五官科医院的专家介绍说高度近视是指的是近视度数大于600度、伴有眼轴延长、眼底视网膜和脉络膜萎缩性等退行性病变为主要特点的屈光不正。 高度近视的病因发病机制及其治疗和预防与一般近视不同。高度近视具有明显的遗传因素,国内调查为常染色体隐性遗传。几乎所有高度近视都有眼轴增长以及眼球后极处巩膜的显著变薄。表现为儿童学龄(前)期出现近视,近视度数进行性增加,眼底视网膜脉络膜病变逐年加重,从而产生许多严重的并发症。

丙肝的发病机制

1.丙肝感染的直接致病作用:许多研究显示丙肝感染者肝组织炎症严重程度与其病毒血症有关,慢性丙肝患者肝组织炎症严重程度与肝细胞内HCV RNA水平的相关性比其与血清HCV RNA水平的相关性更强,使用干扰素治疗后,随血清中HCV RNA含量的减少,其血清中ALT水平也逐渐下降,以上结果提示丙肝病毒可能存在直接致病作用。 2.细胞介导的免疫性损伤可能是丙肝致肝脏病变的主要原因:丙型肝炎肝组织病理学的重要特征之一是汇管区淋巴细胞集聚,有时可形成淋巴滤泡,对比研究认为较乙型肝炎明显,淋巴细胞浸润无疑与免疫反应有关